Volume 08 : AdS/CFT Correspondence : Einstein Metrics and Their Conformal Boundaries
Editor : Olivier Biquard (IRMA Strasbourg, France).
ISBN 978-3-03719-013-5 - May 2005, 260 pages
Since its discovery in 1997 by Maldacena, AdS/CFT correspondence has become one of the prime subjects of interest in string theory, as well as one of the main meeting points between theoretical physics and mathematics. On the physical side it provides a duality between a theory of quantum gravity and a field theory. The mathematical counterpart is the relation between Einstein metrics and their conformal boundaries. The correspondence has been intensively studied, and a lot of progress emerged from the confrontation of viewpoints between mathematics and physics.
Written by leading experts and directed at research mathematicians and theoretical physicists as well as graduate students, this volume gives an overview of this important area both in theoretical physics and in mathematics. It contains survey articles giving a broad overview of the subject and of the main questions, as well as more specialized articles providing new insight both on the Riemannian side and on the Lorentzian side of the theory.
Relevant information and order form are available on EMS web site
Dernière mise à jour le 23-03-2020
Dans la même rubrique :
- Présentation
- Volume 32 : Algebraic Combinatorics, Resurgence, Moulds and Applications (CARMA) Volume 2
- Volume 31 : Algebraic Combinatorics, Resurgence, Moulds and Applications (CARMA) Volume 1
- Volume 30 : Handbook of Teichmüller Theory, Volume VII
- Volume 29 : Eighteen Essays in Non-Euclidean Geometry
- Volume 28 : Linear Forms in Logarithms and Applications
- Volume 27 : Handbook of Teichmüller Theory, Volume VI
- Volume 26 : Handbook of Teichmüller Theory, Volume V
- Volume 25 : Metric Measure Geometry. Gromov’s Theory of Convergence and Concentration of Metrics and Measures
- Volume 24 : Free Loop Spaces in Geometry and Topology
- Volume 23 : Sophus Lie and Felix Klein : The Erlangen Program and Its Impact in Mathematics and Physics.
- Volume 22 : Handbook of Hilbert Geometry
- Volume 21 : Faà di Bruno Hopf Algebras, Dyson–Schwinger Equations, and Lie–Butcher Series.
- Volume 20 : Singularities in Geometry and Topology
- Volume 19 : Handbook of Teichmüller Theory, Volume IV
- Volume 18 : Strasbourg Master Class on Geometry
- Volume 17 : Handbook of Teichmüller Theory, Volume III
- Volume 16 : Handbook of Pseudo-Riemannian Geometry and Supersymmetry
- Volume 15 : Renormalization and Galois Theories
- Volume 14 : Dynamical Systems and Processes
- Volume 13 : Handbook of Teichmüler Theory, volume II
- Volume 12 : Quantum Groups
- Volume 11 : Handbook of Teichmüller Theory, Volume I
- Volume 10 : Physics and Number Theory
- Volume 09 : Differential Equations and Quantum Groups
- Volume 07 : Numerical Methods for Hyperbolic and Kinetic Problems
- Volume 06 : Metric Spaces, Convexity and Nonpositive Curvature
- Volume 05 : Infinite Dimensional Groups and Manifolds
- Volume 04 : Three Courses on Partial Differential Equations
- Volume 03 : From Combinatorics to Dynamical Systems