Volume 18 : Strasbourg Master Class on Geometry
Editor : Athanase Papadopoulos (IRMA, Strasbourg, France)
ISBN 978-3-03719-105-7, DOI 10.4171/105, January 2012, 461 pages, softcover, x cm.
48.00 Euro
This book contains carefully revised and expanded versions of eight courses that were presented at the University of Strasbourg, during two geometry master classes, in 2008 and 2009. The aim of the master classes was to give to fifth-year students and PhD students in mathematics the opportunity to learn new topics that lead directly to the current research in geometry and topology. The courses were held by leading experts. The subjects treated include hyperbolic geometry, three-manifold topology, representation theory of fundamental groups of surfaces and of three-manifolds, dynamics on the hyperbolic plane with applications to number theory, Riemann surfaces, Teichmüller theory, Lie groups and asymptotic geometry.
The text is addressed to students and mathematicians who wish to learn the subject. It can also be used as a reference book and as a textbook for short courses on geometry.
Relevant information and order form are available on EMS web site.
Dernière mise à jour le 23-03-2020
Dans la même rubrique :
- Présentation
- Volume 32 : Algebraic Combinatorics, Resurgence, Moulds and Applications (CARMA) Volume 2
- Volume 31 : Algebraic Combinatorics, Resurgence, Moulds and Applications (CARMA) Volume 1
- Volume 30 : Handbook of Teichmüller Theory, Volume VII
- Volume 29 : Eighteen Essays in Non-Euclidean Geometry
- Volume 28 : Linear Forms in Logarithms and Applications
- Volume 27 : Handbook of Teichmüller Theory, Volume VI
- Volume 26 : Handbook of Teichmüller Theory, Volume V
- Volume 25 : Metric Measure Geometry. Gromov’s Theory of Convergence and Concentration of Metrics and Measures
- Volume 24 : Free Loop Spaces in Geometry and Topology
- Volume 23 : Sophus Lie and Felix Klein : The Erlangen Program and Its Impact in Mathematics and Physics.
- Volume 22 : Handbook of Hilbert Geometry
- Volume 21 : Faà di Bruno Hopf Algebras, Dyson–Schwinger Equations, and Lie–Butcher Series.
- Volume 20 : Singularities in Geometry and Topology
- Volume 19 : Handbook of Teichmüller Theory, Volume IV
- Volume 17 : Handbook of Teichmüller Theory, Volume III
- Volume 16 : Handbook of Pseudo-Riemannian Geometry and Supersymmetry
- Volume 15 : Renormalization and Galois Theories
- Volume 14 : Dynamical Systems and Processes
- Volume 13 : Handbook of Teichmüler Theory, volume II
- Volume 12 : Quantum Groups
- Volume 11 : Handbook of Teichmüller Theory, Volume I
- Volume 10 : Physics and Number Theory
- Volume 09 : Differential Equations and Quantum Groups
- Volume 08 : AdS/CFT Correspondence : Einstein Metrics and Their Conformal Boundaries
- Volume 07 : Numerical Methods for Hyperbolic and Kinetic Problems
- Volume 06 : Metric Spaces, Convexity and Nonpositive Curvature
- Volume 05 : Infinite Dimensional Groups and Manifolds
- Volume 04 : Three Courses on Partial Differential Equations
- Volume 03 : From Combinatorics to Dynamical Systems